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ABSTRACT
Learning from human input has enabled autonomous agents to per-
form increasingly more complex tasks that are otherwise difficult
to carry out automatically. To this end, recent works have studied
how robots can incorporate such input – like demonstrations or
corrections – into objective functions describing the desired be-
haviors. While these methods have shown progress in a variety of
settings, from semi-autonomous driving, to household robotics, to
automated airplane control, they all suffer from the same crucial
drawback: they implicitly assume that the person’s intentions can
always be captured by the robot’s hypothesis space. We call attention
to the fact that this assumption is often unrealistic, as no model
can completely account for every single possible situation ahead
of time. When the robot’s hypothesis space is misspecified, human
input can be unhelpful – or even detrimental – to the way the robot
is performing its tasks. Our work tackles this issue by proposing
that the robot should first explicitly reason about how well its hy-
pothesis space can explain human inputs, then use that situational
confidence to inform how it should incorporate them.
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1 INTRODUCTION
Imagine the household robotics scenario in Figure 1, where a hu-
man tries to get the robot to stay close to the table. If the robot’s
hypothesis space contains this preference, progress in learning from
humans [1, 6–9] allows the robot to interpret the person’s input and
learn the correct hypothesis. However, if the robot’s model does
not capture distances from the table, the system can misinterpret
human guidance, perform unexpected or undesired behavior, and
degrade in overall performance. In these cases, we argue that the ro-
bot should understand when it cannot understand the input, instead
of blindly learning unintended objectives from any interaction.
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Figure 1: A person interacts with the robot, wanting it to be
close to the table. (Top) When the robot’s hypothesis space
accounts for the table (left), its confidence β about what the
input means is high for the correct hypothesis θ . When the
robot’s space is misspecified (right), β is low for all θs.

We tackled this issue in [4, 5] by introducing situational confi-
dence, whereby the robot can quantify howmuch to trust its hypoth-
esis space. Low confidence signals the robot should be cautious and
request more guidance before proceeding, whereas high confidence
suggests the robot can trust its model and learn assuredly.

2 SITUATIONAL CONFIDENCE FORMALISM
Notation. In our setup, a robotR assists a humanH in the execution
of some task. Both R and H can affect the evolution of the state
x ∈ Rn over time via dynamics xt+1 = f (xt ,utR ,u

t
H ), where uH

and uR are the control inputs. The result is a state trajectory x =
[x0, x1, . . . , xT ] given by a start state x0 and the robot and human
inputs uR = [u0

R ,u
1
R , . . . ,u

T
R ] and uH = [u0

H ,u
1
H , . . . ,u

T
H ].

The human has a preference ordering among trajectories given
by a parametrized costCθ (x,uR ,uH ), which is typically a function
of features ϕ. R does not knowCθ , but it can use observations of the
human input to draw inferences on θ . To do so, the robot needs an
observation model describing how the human chooses her inputs.
Following [3, 10], we model the human as a noisily-optimal agent
exponentially likelier to choose actions with low cost:

P(uH | x0,uR ;θ , β) =
e−βCθ

(
x,uR ,uH

)∫
ūH

e−βCθ
(
x,uR ,ūH

)
dūH

, (1)
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where β ∈ [0,∞) determines the degree to which the robot expects
to observe human actions that are consistent with its cost model.
Intuitively, β → 0 models a randomly-acting human, while β → ∞

models a perfectly optimal human.
Situational Confidence Estimation. Our goal is to detect when
the robot’s objective space cannot explain the human input. Differ-
ent from regular cost learning, rather than only interpreting human
input as evidence aboutwhich hypothesis is correct, we additionally
focus on considering whether any hypothesis is correct. To tackle
detecting hypothesis space misspecification, our insight is that we
can reinterpret β as a situational confidence in the extent to which
any hypothesis θ can explain the person’s input. As such, when the
space is correctly specified, human actions appear close to optimal,
thus β is large; however, when the space is misspecified, human
actions appear more random, corresponding to a low confidence β .

The robot can, thus, explicitly reason over its reliability of its
human model in light of new evidence by maintaining a belief
b(θ, β). For each new uH given x0,uR , this belief is updated as:

b ′(θ , β) =
P(uH | x0,uR ;θ , β)b(θ, β)∫

θ̄ , β̄ P(uH | x0,uR ; θ̄, β̄)b(θ̄ , β̄)dθ̄d β̄
, (2)

where b ′(θ, β) = P(θ , β | x0,uR ,uH ).
Using β for robot learning. Given an estimate of this model con-
fidence, there are many ways the robot could proceed in, depending
on the context of its task. For example, in collaborative settings
where a misunderstanding of the task’s objective might be critical,
the robot could stop and ask for clarification before proceeding.
In other settings, such as when carrying out a known task but ac-
commodating human preferences where possible, the robot could
simply dismiss human inputs that result in low β values. Alterna-
tively, the robot can plan to minimize the expected cost for the
human given its current belief, by marginalizing over β :

min
uR θ∼b

[
Cθ (x,uR ,uH )

]
. (3)

In our experiments, we focused on this latter situation given
in (3), where the robot essentially learns in proportion to how
confident it is in its ability to explain given human inputs.

3 EXPERIMENTAL RESULTS
We demonstrated our method’s efficacy in detecting hypothesis
space misspecification by running experiments and a user study
on a 7 degree-of-freedom robotic manipulator learning from real
human demonstrations and physical corrections.

3.1 Demonstrations
In [4], we collected 12 human demonstrations of household motion
planning tasks and performed our situational confidence inference
algorithm offline. As in Figure 1, we asked the participants to pro-
vide demonstrations with respect to a feature of interest, which
the robot might (well-explained) or might not (poorly-explained)
have in its hypothesis space. In situations where the input was
well-explained (Figure 1, top-left), our Bayesian inference method
would result in high β for the correct hypothesis θ . When taken
separately, each demonstration would vary in the inferred situa-
tional confidence, ranging from high peaks as in the figure, to lower

peaks for noisier inputs. However, when putting all user demon-
strations together, the robot’s inferred posterior would converge
to a highly-confident and correct hypothesis. When the input was
poorly-explained (Figure 1, top-right), our algorithm would always
infer low βs for all hypotheses, regardless of the number of inputs.

3.2 Corrections
When learning from corrections, humans can intervene during the
robot’s task execution. As such, running the intractable inference
in (2) is impractical for real-time use. As we detail in [5], we derive
an online approximation of (2) to alleviate these computational
challenges, which helps us separate β estimation from the θ update.

We ran an IRB-approved user study with 12 participants, where
they were asked to physically correct the robot during its incorrect
task execution. In two of the tasks, the humans were providing
corrections that the robot’s hypothesis space could capture. In
the other two tasks, the robot’s space was misspecified, which
resulted in the participants having to repeatedly attempt to correct
the robot. We compared our estimated confidence method to the
state-of-the-art update that does not consider β [2]. The results of
the study supported our hypotheses: for tasks where the robot’s
model was well-specified, our method was not inferior to the state-
of-the-art and the participants felt like the methods performed
the same; when the model was misspecified, our method reduced
unintended learning significantly when compared to the baseline
and our participants felt this difference.

4 FUTUREWORK
Our method introduces the situational confidence parameter β as a
natural way to measure how much the robot should trust its expla-
nations of the given inputs and learn from them. While this work is
a good step in the direction of tackling misspecification, it has both
limitations and possibilities for future work. The greatest drawback
is that, in some cases, the hypothesis space will be misspecified
but the robot will be able to explain the input nonetheless, thus
confusing misspecification for noise. This is a fundamental problem
with more expressive models in general, where there might always
be some hypothesis that explains the input. While a single data
point might not be enough, having more and diverse inputs low-
ers the chance of a single wrong hypothesis being able to explain
well everything. An interesting research direction is analyzing how
much data is enough, as well as how to modify the algorithm to
discern misspecification from noise.

Another compelling next step is considering multiple hypothesis
spaces, some more expressive than others, and switching between
them whenever the situational confidence is very low for all θs. It
would be valuable to analyze when some models, although more
data- and computation-hungry, can perform better, and how often
they run into the fundamental issue detailed above. Additionally,
an interesting problem to explore is that of feature elicitation: how
could the robot expand its hypothesis space online by actively
querying the human? Indeed, automatically discovering human
preferences and goals could have implications for reducing mis-
specification. Lastly, we are also interested in extending our work
to sequential time-dependent inputs, since people often times can
change their minds about which objectives they are considering.
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