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Challenge
What if what H wants is outside R’s hypothesis space 5 ? 

Insight: If the human seems suboptimal for all hypotheses, chances are we don’t have the right hypothesis space.
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Demonstrations: Joint inference on discretized space
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Physical Corrections: Real-time approximation

a) Apparent confidence estimation

β1 > β2 > β3 

||!"∗ ||L = ||!"O ||L < ||!"L ||L< ||!"Q ||L = ||!"||L

b) Confidence-aware approximate MAP estimate:

A#0 = A# − R S( A7, A#0) (Φ ξU − Φ(ξV))

When misspecified (2&4), confidence-aware reduces 
unintended learning, while maintaining good accuracy 
when the hypothesis space is well-specified (1&3).
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a) Well-specified hypothesis space

b) Misspecified hypothesis space
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